Calibre LFD (Litho-Friendly Design) Capturing Process Variations to Improve Design Robustness

Product Launch - Editor Presentation

Joseph Sawicki vp and general manager design to silicon division

Q1 2006

Without EDA and OPC, There Would Be No Advanced Node

JAS, Calibre LFD Editor Presentation - Q1/2006

Target: 90nm

90nm Poly OPC

4 JAS, Calibre LFD Editor Presentation - Q1/2006

Gro

90nm Poly with OPC

Graphics 5 JAS, Calibre LFD Editor Presentation - Q1/2006

Silicon and Target

Yield Management Moves Into Design

Sources of Lithographic Variability

Two main sources of lithographic variability

- **Dose: variation in intensity**
- **Focus: variation of wafer in z axis**

Defines a manufacturing window, commonly referred to as "the process window"

Litho Variation and Yield

Electrical Variability with Process Windows

JAS, Calibre LFD Editor Presentation - Q1/2006

Power/Leakage Variability

Electrical Variability with Process Windows

JAS, Calibre LFD Editor Presentation - Q1/2006

Solution to Lithographic Variability Issues

Because of

- Layout failure and sensitivity across process windows
- Electrical performance uncertainty across process windows
- Power/leakage variability

Solution is to manage the impact of process variations during design stage to improve layout robustness

Introducing Calibre LFD

- Calibre LFD is a new tool that provides significant benefits to the *Layout Designer* by:
 - Checking lithographic variation and failure during the design stage
 - **—** Taking physical verification to the next level
 - From <u>rule</u> based only
 - **To <u>rule and model</u> based**

Based on Mentor's technology leadership with Calibre DRC and Calibre OPC, we are ideally positioned to bridge the DFM divide between design and manufacturing

Calibre LFD Technology

Adding LFD Step to Design Creation Flow

Moving to Model-Based Design Rule Checking

Minimum Area Overlap Check (MOC) Contact coverage

Minimum Width Check (MWC) - Pinching

Minimum Area Variability Check (MAVC) Gate control

JAS, Calibre LFD Editor Presentation - Q1/2006

LFD-Guided Optimization Example

Layer	DVI
POLY	0.008
CONTACT	0.294
METAL1	0.004

Critical Errors: 6

- 4 -Non resolving contacts
- 2-Poly silicon pinching

LFD Modifications

Layer	DVI
POLY	0.008
CONTACT	0.294
METAL1	0.004

Critical Errors: None

Layer	DVI
POLY	0.007
CONTACT	0.000
METAL1	0.005

- Place contacts on grid
- Modify metal and poly

Parametric Benefit: Timing

Parametric Benefit: Leakage

Engagement Status

"The ability to deliver high yielding designs is critical in nanometer technology," said Luigi Capodieci, Principal Member of Technical Staff at AMD. "By adding Calibre LFD to our existing flow we can make layout modification tradeoffs at the earliest stages of design creation, and dramatically improve layout robustness across the process window."

Leveragable Technology for Design and Production

- **Calibre LFD is for Layout Designers**
- **Integrated within current Design Environment** — Fitting current Physical Verification (DRC) methodology
- Leverage production-proven modeling from OPC
- Giving the Layout designer the capability to verify/analyze that a layout will have acceptable Litho Yield
 - **—** Systematic Yield (catastrophic failure check)
 - Parametric Yield
 - TTM as issues are found before fab
- Very successful engagements with teacher customers

